Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(4): 147, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682181

RESUMO

BACKGROUND: Lactiplantibacillus plantarum 12-3 holds great promise as a probiotic bacterial strain, yet its full potential remains untapped. This study aimed to better understand this potential therapeutic strain by exploring its genomic landscape, genetic diversity, CRISPR-Cas mechanism, genotype, and mechanistic perspectives for probiotic functionality and safety applications. METHODS: L. plantarum 12-3 was isolated from Tibetan kefir grains and, subsequently, Illumina and Single Molecule Real-Time (SMRT) technologies were used to extract and sequence genomic DNA from this organism. After performing pan-genomic and phylogenetic analysis, Average Nucleotide Identity (ANI) was used to confirm the taxonomic identity of the strain. Antibiotic resistance gene analysis was conducted using the Comprehensive Antibiotic Resistance Database (CARD). Antimicrobial susceptibility testing, and virulence gene identification were also included in our genomic analysis to evaluate food safety. Prophage, genomic islands, insertion sequences, and CRISPR-Cas sequence analyses were also carried out to gain insight into genetic components and defensive mechanisms within the bacterial genome. RESULTS: The 3.4 Mb genome of L. plantarum 12-3, was assembled with 99.1% completeness and low contamination. A total of 3234 genes with normal length and intergenic spacing were found using gene prediction tools. Pan-genomic studies demonstrated gene diversity and provided functional annotation, whereas phylogenetic analysis verified taxonomic identity. Our food safety study revealed a profile of antibiotic resistance that is favorable for use as a probiotic. Analysis of insertional sequences, genomic islands, and prophage within the genome provided information regarding genetic components and their possible effects on evolution. CONCLUSIONS: Pivotal genetic elements uncovered in this study play a crucial role in bacterial defense mechanisms and offer intriguing prospects for future genome engineering efforts. Moreover, our findings suggest further in vitro and in vivo studies are warranted to validate the functional attributes and probiotic potential of L. plantarum 12-3. Expanding the scope of the research to encompass a broader range of L. plantarum 12-3 strains and comparative analyses with other probiotic species would enhance our understanding of this organism's genetic diversity and functional properties.


Assuntos
Genoma Bacteriano , Kefir , Filogenia , Probióticos , Tibet , Kefir/microbiologia , Farmacorresistência Bacteriana/genética , Lactobacillus plantarum/genética , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Sistemas CRISPR-Cas
2.
Sci Rep ; 14(1): 3714, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355789

RESUMO

The present study aimed to investigate changes of physicochemical and functional properties of the processed cheeses (PCs) made with Cheddar (PC1), Mozzarella (PC2) and both of them at a ratio of 1:1 (PC3) during storage at 4 °C for 4 months. The results showed that the type of natural cheese used affected the composition of PCs with lower fat content in PC2 due to the lower fat content of Mozzarella cheese used. PC2 with lower fat content showed decreased meltability and oil leakage compared with PC1 and PC3. The stretchability of all the samples significantly (P < 0.05) decreased during storage, and PC1 showed lower stretchability. This was confirmed by increased protein hydrolysis of all the samples during the storage with a higher level of proteolysis in PC1, leading to decreased stretchability of PCs. Further low-field nuclear magnetic resonance analysis indicated more entrapped water in cheese due to moisture migration into the cheese matrix that might squeeze the fat globules to aggregate, causing more fat leakage during later stages of storage. This was evidenced by microstructural analysis showing different extents of increase in fat particle sizes and decrease in free serum in all the PC samples over the storage time. Therefore, the present study provides further understanding of the mechanism of quality change of PC during refrigerated storage as affected by proteolytic properties and composition of natural cheese used.


Assuntos
Queijo , Queijo/análise , Hidrólise , Peptídeo Hidrolases , Proteólise , Manipulação de Alimentos/métodos
3.
Food Res Int ; 178: 114000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309926

RESUMO

Lactosucrose (LS) is a known prebiotic that has gained recognition for its low caloric content and various health benefits. However, its potential in food applications remains largely unexplored. In this study the effects of adding LS to milk at concentrations (0 %, 2 %, 5 % and 8 % w/v) for yogurt production, and the relevant changes in yogurt texture, microbial composition and metabolomics were investigated. Our findings revealed that LS played a role in promoting the formation of a structured gel during fermentation, resulting in increased elasticity and viscosity while reducing fluidity. Additionally incorporating high doses of LS into yogurt led to reduced post-acidification, enhanced survival of starter bacteria, improved water retention capacity and overall texture throughout a refrigerated storage period of 21 days. Notably higher concentrations of LS (8 % w/v) exhibited effects on enhancing yogurt quality. Furthermore, untargeted metabolomics analysis using UPLC Q TOF MS/MS revealed 45 differentially expressed metabolites, including up-regulated L-arginine, L-proline and L-glutamic acid along with the down-regulated glutathione, L-tyrosine, L-phenylalanyl and L-proline. These differential metabolites were primarily associated with amino acid metabolism such as thiamine metabolism, nicotinic acid salt and nicotinamide metabolism, and pyrimidine metabolism. As a result, the inclusion of LS in yogurt had an impact on the production of various beneficial metabolites in yogurt, highlighting the importance of combining prebiotic LS with probiotics to obtain desired physiological benefits of yogurt.


Assuntos
Espectrometria de Massas em Tandem , Trissacarídeos , Iogurte , Iogurte/microbiologia , Concentração de Íons de Hidrogênio , Prolina
4.
Int J Biol Macromol ; 248: 125932, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482152

RESUMO

The present study aimed to purify and characterize a novel low-molecular-weight antimicrobial peptide (AMP) named as PNMGL2 produced by Lactiplantibacillus plantarum NMGL2. The AMP was effectively separated and purified by ethyl acetate extraction and DEAE-Sepharose anion exchange chromatography. Tricine-SDS-PAGE of the purified AMP showed a major protein band below 1.7 kDa, which was identified by MALDI-TOF MS to be a hexapeptide LNFLKK (761.95 Da), and structurally characterized to be combination of helixes and random coil by a PEP-FOLD 3 De novo approach. The antimicrobial activity of LNFLKK was confirmed by chemical synthesis of the peptide that showed clear inhibition (MIC 7.8 mg/mL) against both Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), and Gram-negative bacteria (Enterobacter sakazakii, Escherichia coli and Shigella flexneri). PNMGL2 was pH resistant (pH 2-9), heat stable (121 °C, 30 min), and protease sensitive. Treatment of UV rays, sodium chloride and organic solvents did not decrease the activity. Sequencing of the whole genome of L. plantarum NMGL2 revealed presence of a bacteriocin gene cluster with two putative bacteriocin genes (ORF4 and ORF5) that were not expressed, confirming the significance of PNMGL2 contributing the antimicrobial activity of the strain. This study demonstrated the low-molecular-weight AMP that was uncharacterized in the relevant available databases, suggesting its potential application as a novel natural food preservative.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Antibacterianos , Lactobacillus plantarum/química , Bacteriocinas/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peptídeos Antimicrobianos
5.
Foods ; 12(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37238869

RESUMO

In this study, the exopolysaccharide (EPS) from Lactiplantibacillus plantarum (HMX2) was isolated from Chinese Northeast Sauerkraut. Its effects on juvenile turbot were investigated by adding different concentrations of HMX2-EPS (C: 0 mg/kg, H1: 100 mg/kg, H2: 500 mg/kg) to the feed. Compared with the control group, HMX2-EPS significantly improved the growth performance of juvenile turbot. The activities of antioxidant enzymes, digestive enzymes, and immune-related enzymes were significantly increased. HMX2-EPS could also increase the secretion of inflammatory factors and enhance the immune response of turbot by regulating the IFN signal transduction pathway and exhibit stronger survival rates after the A. hydrophila challenge. Moreover, HMX2-EPS could improve the diversity of intestinal microbiota in juvenile fish, increase the abundance of potential probiotics, and reduce the abundance of pathogenic bacteria. The function of gut microbes in metabolism and the immune system could also be improved. All results showed better effects with high concentrations of HMX2-EPS. These results indicated that HMX2-EPS supplementation in the diet could promote growth, improve antioxidant activity, digestive capacity, and immunity capacity, and actively regulate the intestinal microbiota of juvenile turbot. In conclusion, this study might provide basic technical and scientific support for the application of L. plantarum in aquatic feed.

6.
Lett Appl Microbiol ; 76(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37133416

RESUMO

In this research, the synbiotic effects of the probiotic Lactiplantibacillus plantarum YW11 and lactulose on intestinal morphology, colon function, and immune activity were evaluated in a mouse model of UC induced by dextran sulfate sodium (DSS). The results revealed that L. plantarum YW11 in combination with lactulose decreased the severity of colitis in mice and improved the structure of the damaged colon, as assessed using colon length and disease condition. Moreover, colonic levels of pro-inflammatory cytokines (IL-1ß, IL-6, IL-12, TNF-α, and IFN-γ) were significantly lower and anti-inflammatory factors (IL-10) were significantly higher following the synbiotic supplementation. The synbiotic also exerted antioxidant effects by up-regulating SOD and CAT levels and down-regulating MDA levels in colon tissue. It could also reduce the relative expression of iNOS mRNA and increase the relative expression of nNOS and eNOS mRNA. Western blot confirmed the increased expression of c-Kit, IκBα, and SCF and significantly reduced expression of the NF-κB protein. Therefore, the combination of L. plantarum YW11 and lactulose exerted therapeutic effects mainly through the NF-κB anti-inflammatory pathway, which represented a novel synbiotic approach in the prevention of colonic inflammation.


Assuntos
Colite Ulcerativa , Probióticos , Simbióticos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Lactulose/metabolismo , Lactulose/farmacologia , Lactulose/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/metabolismo , Colo/metabolismo , Anti-Inflamatórios/uso terapêutico , Probióticos/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
J Biosci Bioeng ; 135(2): 118-126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36564253

RESUMO

Lactosucrose (LS) is a prebiotic trisaccharide enzymatically synthesized by transglycosylation from lactose and sucrose with beneficial health effect. The ß-fructofuranosidase used for synthesis of LS was produced from Bacillus methanolicus LB-1, which was isolated from traditional rice wine. A maximal yield of 8.63 U/mL of the enzyme was obtained by fermentation with B. methanolicus LB-1 under the optimized conditions: 10 g/L of glucose, 5 g/L of yeast extract, initial medium pH at 7.0, 37 °C, 24 h. The enzyme was purified and identified by ammonium sulfate fractional precipitation, Sephadex G-75 gel filtration chromatography and LC-MS, and SDS-PAGE of the purified enzyme showed a major protein band at 45 kDa. Biosynthesis of LS was performed using the purified ß-fructofuranosidase, and production of LS reached 110 g/L under the optimized reaction conditions: pH at 7.0, 37 °C, 6.0 U/g sucrose of enzyme, 15% of sucrose, 15% of lactose, 28 h. HPLC analysis of the reaction products showed a distinct peak for LS at about 30 min of elution, confirming that B. methanolicus LB-1 ß-fructofuranosidase had effective transfructosylation activity. Therefore, this new microbial source of ß-fructofuranosidase may be a candidate with potential application prospect in biosynthesis of prebiotic LS.


Assuntos
Lactose , beta-Frutofuranosidase , beta-Frutofuranosidase/metabolismo , Lactose/metabolismo , Trissacarídeos/metabolismo , Sacarose/metabolismo , Concentração de Íons de Hidrogênio
8.
Nutrients ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501048

RESUMO

This study aimed to evaluate the association of diet quality and perception of consumption benefits with intake of fermented dairy products in a representative sample of the Polish population. The study was carried out in February 2020 and involved 2009 men and women randomly sampled from the representative Polish population stratified into two age groups (19-30 and 66-75 years). Dairy product intake was evaluated using a qualitative food frequency questionnaire. Diet quality was assessed by calculating the Mediterranean Diet Adherence Screener (MEDAS) score. The perceived health benefit of dairy product consumption was assessed by a literature-based questionnaire. The Health Concern Scale was used to measure participants' attitudes toward health. The median intake of fermented dairy products was 0.8 portion/day (IQR: 0.4-1.6). Intake of fermented dairy products was associated with a higher MEDAS score. We observed that people with the highest intake of fermented dairy products consumed more oils, vegetables, wine, legumes, fish and seafood, sweets and pastries, nuts, had a higher preference for white meat and were more likely to report their perceived benefits to maintain body weight, reduce cardiovascular risk, and improve immune and dental health. Moreover, a high intake of fermented dairy products was positively related to paying more attention to health. Our study identified patterns of health behaviors associated with the frequent consumption of fermented dairy products. We observed that the intake of fermented dairy products is associated with better diet quality, consumer self-consciousness, and a greater attitude toward personal health.


Assuntos
Produtos Fermentados do Leite , Dieta Mediterrânea , Animais , Dieta , Laticínios , Verduras , Peso Corporal
9.
Crit Rev Food Sci Nutr ; : 1-23, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315042

RESUMO

Synbiotic is defined as the dietary mixture that comprises both probiotic microorganisms and prebiotic substrates. The concept has been steadily gaining attention owing to the rising recognition of probiotic, prebiotics, and gut health. Among prebiotic substances, oligosaccharides demonstrated considerable health beneficial effects in varieties of food products and their combination with probiotics have been subjected to full range of evaluations. This review delineated the landscape of studies using microbial cultures, cell lines, animal model, and human subjects to explore the functional properties and host impacts of these combinations. Overall, the results suggested that these combinations possess respective metabolic properties that could facilitate beneficial activities therefore could be employed as dietary interventions for human health improvement and therapeutic purposes. However, uncertainties, such as applicational practicalities, underutilized analytical tools, contradictory results in studies, unclear mechanisms, and legislation hurdles, still challenges the broad utilization of these combinations. Future studies to address these issues may not only advance current knowledge on probiotic-prebiotic-host interrelationship but also promote respective applications in food and nutrition.

10.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080167

RESUMO

The important role of Lactiplantibacillus plantarum strains in improving the human mucosal and systemic immunity, preventing non-steroidal anti-provocative drug-induced reduction in T-regulatory cells, and as probiotic starter cultures in food processing has motivated in-depth molecular and genomic research of these strains. The current study, building on this research concept, reveals the importance of Lactiplantibacillus plantarum 13-3 as a potential probiotic and bacteriocin-producing strain that helps in improving the condition of the human digestive system and thus enhances the immunity of the living beings via various extracellular proteins and exopolysaccharides. We have assessed the stability and quality of the L. plantarum 13-3 genome through de novo assembly and annotation through FAST-QC and RAST, respectively. The probiotic-producing components, secondary metabolites, phage prediction sites, pathogenicity and carbohydrate-producing enzymes in the genome of L. plantarum 13-3 have also been analyzed computationally. This study reveals that L. plantarum 13-3 is nonpathogenic with 218 subsystems and 32,918 qualities and five classes of sugars with several important functions. Two phage hit sites have been identified in the strain. Cyclic lactone autoinducer, terpenes, T3PKS, and RiPP-like gene clusters have also been identified in the strain evidencing its role in food processing. Combined, the non-pathogenicity and the food-processing ability of this strain have rendered this strain industrially important. The subsystem and qualities characterization provides a starting point to investigate the strain's healthcare-related applications as well.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Probióticos , Bacteriocinas/metabolismo , Microbiologia de Alimentos , Inocuidade dos Alimentos , Humanos , Lactobacillus plantarum/metabolismo , Probióticos/metabolismo
11.
Front Nutr ; 9: 938869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091233

RESUMO

This study aimed to examine the ameliorating effect of Lactobacillus plantarum (LP) KFY02 on low-fiber diet-induced constipation in mice. LP-KFY02 was isolated from the natural fermented yogurt in Korla of Xinjiang. The mice with low-fiber diet-induced constipation in experimental groups were administered 1 × 109 CFU/kg LP-KFY02 (KFY02H) and 1 × 108 CFU/kg LP-KFY02 (KFY02L). After LP-KFY02 treatment with constipation mice, the mice fecal water content, intestinal transit ability and defecation time of constipated mice were improved. The mice fecal flora diversity, abundance and structure of the intestinal flora were regulated to the balanced state. The mice serum levels of gut motility related neuroendocrine factors have been increased, the intestinal mucosal barrier function and gut motility related gene expression were regulated in mice colon tissues. At the same time, the mice colon tissue damage were improved. These parameters in the KFY02H group were close to the normal group. These results suggested that LP-KFY02 could be considered as a potential probiotic to help alleviate low-fiber diet-induced constipation. They also provided a theoretical basis for the study of probiotics to relieve constipation by regulating intestinal flora.

12.
J Fungi (Basel) ; 8(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35887468

RESUMO

Fermentation of available sugars in milk by yogurt starter culture initially and later by Saccharomyces boulardii (Probiotic yeast) improves the bioavailability of nutrients and produces bioactive substances and volatile compounds that enhance consumer acceptability. The combination of S. boulardii, a unique species of probiotic yeast, and inulin, an exopolysaccharide used as a prebiotic, showed remarkable probiotic and hydrocolloid properties in dairy products. The present study was designed to study the effect of fermentation and storage on antioxidant and volatile capacities of probiotic and synbiotic yogurt by incorporation of S. boulardii and inulin at 1%, 1.5%, and 2% (w/v), compared with the probiotic and control plain yogurt. All samples were stored at 4 °C, and during these four weeks, they were analyzed in terms of their antioxidant and volatile compounds. The synbiotic yogurt samples having inulin and S. boulardii displayed significantly higher DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical activity values and more values of TPC (total phenol contents) than control plain yogurt. A total of 16 volatile compounds were identified in S5-syn2 and S4-syn1.5, while S3-syn1 and S2-P had 14, compared with the control S1-C plain yogurt samples, which had only 6. The number of volatile compounds increased with the increasing concentration of inulin throughout the storage period. Therefore, this novel synbiotic yogurt with higher antioxidant and volatile compounds, even with chilling storage conditions, will be a good choice for consumer acceptability.

13.
Appl Microbiol Biotechnol ; 106(17): 5715-5728, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35896837

RESUMO

High-throughput sequencing of ribosomal RNA (rRNA) amplicons has served as a cornerstone in microbiome studies. Despite crucial implication of organelle 16S rRNA measurements to host gut microbial activities, genomic DNA (gDNA) was overwhelmingly targeted for amplicon sequencings. Although gDNA could be a reliable resource for gene existing validation, little information is revealed in regard to the activity of microorganisms owing to the limited changes gDNA undertaken in inactive, dormant, and dead bacteria. We applied both rRNA- and gDNA-derived sequencings on mouse cecal contents. Respective experimental designs were verified to be suitable for nucleic acid (NA) purification. Via benchmarking, mainstream 16S rRNA hypervariable region targets and reference databases were proven adequate for respective amplicon sequencing study. In phylogenetic studies, significant microbial composition differences were observed between two methods. Desulfovibrio spp. (an important group of anaerobic gut microorganisms that has caused analytical difficulties), Pediococcus spp., and Proteobacteria were drastically lower as represented by gDNA-derived compositions, while microbes like Firmicutes were higher as represented by gDNA-derived microbiome compositions. Also, using PICRUSt2 as an example, we illustrated that rRNA-derived sequencing might be more suitable for microbiome function predictions since pathways like sugar metabolism were lower as represented by rRNA-derived results. The findings of this study demonstrated that rRNA-derived amplicon sequencing could improve identification capability of specific gut microorganisms and might be more suitable for in silico microbiome function predictions. Therefore, rRNA-derived amplicon sequencings, preferably coupled with gDNA-derived ones, could be used as a capable tool to unveil active microbial components in host gut. KEY POINTS: • Conventional pipelines were adequate for the respective amplicon sequencing study • Groups, such as Desulfovibrio spp., were differently represented by two methods • Comparative amplicon sequencings could be useful in host active microbiota studies.


Assuntos
Microbioma Gastrointestinal , Animais , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Organelas , Filogenia , RNA Ribossômico 16S
14.
Pharmacol Res ; 182: 106332, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779817

RESUMO

Currently, the reported source of extracellular vesicles (EVs) for the treatment of ischemic stroke(IS)is limited to mammals. Moreover, these EVs are restricted to clinical translation by the high cost of cell culture. In this respect, Lactobacillus plantarum culture is advantaged by low cost and high yield. However, it is poorly understood whether Lactobacillus plantarum-derived EVs (LEVs) are applicable for the treatment of IS. Here, our results demonstrated that LEVs reduced apoptosis in ischemic neuron both in vivo and in vitro. As revealed by high-throughput sequencing, miR-101a-3p expression was significantly elevated by LEV treatment in OGD/R-induced neurons, as confirmed in the tMCAO mice treated with LEVs. Mechanistically, c-Fos was directly targeted by miR-101a-3p. In addition, c-Fos determined ischemia-induced neuron apoptosis in vivo and in vitro through the TGF-ß1 pathway, miR-101a-3p inhibition aggravated ischemia-induced neuron apoptosis in vitro and in vivo, and miR-101a-3p overexpression produced the opposite results. Hsa-miR-101-3p was downregulated in the plasma of patients with IS but upregulated in the patients with neurological recovery after rt-PA intravenous thrombolysis. In conclusion, Our results demonstrated for the first time that LEVs might inhibit neuron apoptosis via the miR-101a-3p/c-Fos/TGF-ß axis, and has-miR-101-3p is a potential marker of neurological recovery in IS patients.


Assuntos
Lesões Encefálicas , Vesículas Extracelulares , Lactobacillus plantarum , MicroRNAs , Animais , Apoptose , Vesículas Extracelulares/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Mamíferos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Fator de Crescimento Transformador beta
15.
Foods ; 11(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454654

RESUMO

In recent years, a variety of double protein dairy products have appeared on the market. It is a dairy product made by replacing parts of animal protein with plant protein and then using certain production methods. For some countries with limited milk resources, insufficient protein intake and low income, double protein dairy products have a bright future. More and more studies have found that double protein dairy products have combined effects which can alleviate the relatively poor functional properties of plant protein, including solubility, foaming, emulsifying and gelling. In addition, the taste of plant protein has been improved. This review focuses on the current state of research on double protein dairy products. It covers some salient features in the science and technology of plant proteins and suggests strategies for improving their use in various food applications. At the same time, it is expected that the fermentation methods used for those traditional dairy products as well as other processing technologies could be applied to produce novelty foods based on plant proteins.

16.
Foods ; 11(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159543

RESUMO

The exopolysaccharide (EPS) produced by Lactiplantibacillus plantarum NMGL2 isolated from traditional fermented dairy cheese was purified chromatographically with DEAE-Sepharose and Sepharose CL-6B columns. The purified EPS was characterized by various physicochemical methods and in vitro fecal microbiota regulation assay. The results showed that the EPS had a relatively low molecular weight of 3.03 × 104 Da, and it had a relatively high degradation temperature of 245 °C as determined by differential scanning calorimetry. Observation of the EPS by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy revealed a highly branched and tangled fibrous network microstructure with many hollow microtubules and spherical particles. Structural study by 1H NMR spectroscopy suggested that the EPS contained a tetrasaccharide repeating unit with monosaccharide components of ß-galactose (4.6%), α-glucose (20.6%), and α-mannose (74.8%). The EPS was highly resistant to hydrolysis of simulated human saliva, gastric, and intestinal juices. Moreover, the EPS beneficially affected the composition and diversity of the fecal microbiota, e.g., increasing the relative abundance of Firmicutes and inhibiting that of Proteobacteria. The results of this study indicated significant bioactivity of this novel low-molecular-weight EPS produced by Lpb. plantarum NMGL2, which could serve as a bioactive agent for potential applications in the food and health care industry.

17.
Food Chem ; 372: 131226, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34627095

RESUMO

The effects of high hydrostatic pressure (HHP) on the conformation and immunoreactivity of bovine ß-lactoglobulin (BLG) were studied. BLG was treated under 100-600 MPa at the temperature of 20-60 °C. The immunoglobulin E (IgE) binding ability of BLG decreased when the pressure increased from 0.1 to 200 MPa. However, the IgE binding increased with the increase in pressure from 200 to 400 MPa, followed by a gradual decrease until a pressure of 600 MPa. The IgE binding ability continuously decreased with an increase in pressure at 60 °C. The conformation of HHP-treated BLG was evaluated using fluorescence spectroscopy, circular dichroism spectroscopy and molecular dynamics (MD) simulation. Increasing the temperature and pressure promoted the unfolding of BLG, causing the disappearance of some α-helixes and some ß-sheets. Based on ELISA analysis, it was revealed that HHP-termperature treatment altered the immunoreactivity of BLG by altering the structures and conformational states of BLG.


Assuntos
Imunoglobulina E , Lactoglobulinas , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática , Pressão Hidrostática , Temperatura
18.
J Inflamm Res ; 14: 6575-6585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34908859

RESUMO

OBJECTIVE: Colitis is one of the main gastrointestinal diseases threatening human health. MATERIALS AND METHODS: In this study, a synbiotic composed of arabinoxylan (AX) and Lactobacillus fermentum HFY06 was tested to determine its ability to relieve dextran sulfate sodium (DSS)-induced colitis. RESULTS: The experimental results showed that the synergistic effect of AX and L. fermentum HFY06 alleviated the weight loss of DSS-mediated colitis mice and lowered the disease activity index (DAI) score. Determination of biochemical indicators found that the synbiotic composed of AX and L. fermentum HFY06 increased the body's antioxidant capacity and reduced inflammation. The histopathological examination results showed that the colonic crypts of the mice in the model group were disordered, goblet cells were lost, and the mucous membrane was severely damaged. However, the combination of AX and L. fermentum HFY06 can significantly reverse the histopathological changes in the colon mediated by DSS. The gene expression of colon tissue was further determined, and the results showed that the synergistic effect of AX and L. fermentum HFY06 inhibited the activation of the NF-κB signaling pathway, downregulated the mRNA expression levels of nuclear factor-κB-p65 (NF-κBp65), upregulated the mRNA expression of NF-κB inhibitor-α (IκB-α), inhibited the release of cytokines tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2), and exerted anti-colitis effects. CONCLUSION: This study shows that the synbiotic composed of AX and L. fermentum HFY06 has the potential to prevent and treat colitis.

19.
Food Res Int ; 147: 110470, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399468

RESUMO

Lactic acid bacteria have been reported to be capable of converting polyunsaturated fatty acids, e.g. linoleic acid (LA) into bioactive and other fatty acid metabolites that are not toxic to the bacteria themselves, but the mechanism of this conversion is not clear. Here we reported for the first time that probiotic L. plantarum 12-3 derived from Tibet kefir when supplemented with LA from 1% to 10% in the MRS medium transformed LA to various fatty acid derivatives. These derivatives formed in the medium were identified with gas chromatography and mass spectrometry. In silico studies were done to confirm the enzymatic reactions responsible for this conversion. We found that L. plantarum 12-3 could convert LA at different concentrations to 8 different fatty acid derivatives. Putative candidate enzymes involved in biotransformation of LA into fatty acid derivatives were identified via whole genome of L. plantarum 12-3, including linoleate isomerase, acetoacetate decarboxylase and dehydrogenase. Therefore, the present study provides further understanding of the mechanism of conversion of LA to health-beneficial fatty acid metabolites in probiotic L. plantarum, which can be explored for potential application in functional foods.


Assuntos
Lactobacillus plantarum , Biotransformação , Simulação por Computador , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico
20.
Foods ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209263

RESUMO

To understand the mechanism of tolerance of lactic acid bacteria (LAB) during cold storage of fermented milk, 31 LAB strains were isolated from traditional fermented products, and Lactiplantibacillus plantarum NMGL2 was identified with good tolerance to both cold and acid stresses. Data-independent acquisition proteomics method was employed to analyze the response of Lpb. plantarum NMGL2 to the combinational cold and acid stresses during storage of the fermented milk made with the strain at 4 °C for 21 days. Among the differentially expressed proteins identified, 20 low temperature-resistant proteins and 10 acid-resistant proteins were found. Protein interaction analysis showed that the low temperature-resistant proteins associated with acid-resistant proteins were Hsp1, Hsp2, Hsp3, CspC, MurA1, MurC, MurD, MurE1, and MurI, while the acid-resistant proteins associated with low temperature-resistant proteins were DnaA, DnaK, GrpE, GroEL, and RbfA. The overall metabolic pathways of Lpb. plantarum NMGL2 in response to the stresses were determined including increased cell wall component biosynthesis, extracellular production of abundant glycolipids and glycoproteins, increased expression of F1Fo-ATPase, activation of glutamate deacidification system, enhanced expression of proteins and chaperones associated with cell repairing caused by the acidic and cold environment into the correct proteins. The present study for the first time provides further understanding of the proteomic pattern and metabolic changes of Lpb. plantarum in response to combinational cold and acid stresses in fermented milk, which facilitates potential application of Lpb. plantarum in fermented foods with enhanced survivability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA